Меню

Как настроить колебательный контур в приемнике



Как настроить колебательный контур в приемнике

О необходимости подстройки колебательных контуров приемника можно судить по несоответствию градуировки шкалы настройки, пониженной или неравномерной по диапазонам чувствительности и плохой избирательности. Единой схемы для настройки контуров приемников различных типов не существует, но при всякой подстройке их различают четыре вида операций:

  1. Настройка одного или нескольких контуров на какую-либо фиксированную частоту (в каскадах ПЧ, контурах заграждающих фильтров и в приемниках с фиксированной настройкой).
  2. Согласование резонанса между одновременно настраивающимися несколькими контурами (в приемниках прямого усиления и высокочастотной части супергетеродина).
  3. Сопряжение кривой настройки с градуировкой шкалы.
  4. Регулировка избирательности приемника.

Все ли или только некоторые из этих операций подлежат выполнению — зависит от типа приемника и его состояния. У приемников прямого усиления различают антенный или входной контуры, контуры УВЧ и контур детектора с обратной связью или без нее, а у супергетеродинных приемников — высокочастотные контуры (перед преобразователем частоты), контур гетеродина и контуры ПЧ (последний из них — контур детектора). Кроме того, во многих приемниках имеются заграждающие контуры, включенные обычно сразу за антенным гнездом. Сильно расстроенный приемник подстраивают, начиная с контура детектора, а затем, последовательно приближаясь к антенне, настраивают все прочие контуры.

Рис. 1. Подстройка контуров приемника прямого усиления

У супергетеродинных приемников контур гетеродина настраивают до подстройки контуров, стоящих перед преобразователем частоты. Контуром, определяющим градуировку, в приемнике прямого усиления является контур детектора (особенно при наличии в нем обратной связи), а в супергетеродине — совместно контур гетеродина и контуры УПЧ. Входные контуры (перед преобразователем частоты) подстраивают последними в соответствии с полученной градуировкой шкалы pис. 2 .

Рис. 2. Порядок настройки контуров супергетеродина

    УВЧ — усилитель высокой частоты
    Д — детектор
    УНЧ — усилитель низкой частоты
    П — преобразователь
    Г — гетеродин
    УПЧ — усилитель промежуточной частоты.

Двумя кружочками обведены номера контуров, определяющих градуировку шкалы настройки приемника.

Колебательные контуры ЧМ канала настраивают в такой же последовательности после окончания настройки контуров всех диапазонов АМ.

Рис. 3а. Подключение СГ к управляющей сетке

Для подстройки контуров необходим высокочастотный источник напряжения, частоту которого можно устанавливать с достаточной точностью. Это может быть генератор стандартных сигналов ГСС, сигнал-генератор СГ или самодельный генератор. Присоединяя сигнал-генератор к подлежащим подстройке контурам, надо помнить, что они нагружаются соединительными проводами, расстраиваются и увеличивают свое затухание. Поэтому напряжение ВЧ следует всегда подавать на управляющую сетку лампы, предшествующей подстраиваемому контуру ( pис. 3а ), а при подстройке антенного контура — на гнездо антенны ( pис. 3б ) через эквивалент антенны ( pис. 3в ).

Рис. 3б. Подключение СГ к гнезду антенны

  1. Сигнал-генератор
  2. Эквивалент антенны
  3. Приемник.

Точная подстройка колебательного контура на фиксированную частоту может быть осуществлена с помощью одного подстроечного элемента. Для точного согласования нескольких одновременно перестраиваемых контуров необходимо иметь конденсаторы переменной емкости со строго одинаковым законом изменения емкости и два подстроечных элемента, позволяющих выравнивать как индуктивности всех контуров, так и начальные емкости их.

Для достижения же хорошего сопряжения между настройками входных колебательных контуров и гетеродинного контура, в последнем надо иметь три подстроечных элемента. При этом точное сопряжение обеспечивается только в трех точках диапазона. Качество же сопряжения в остальных точках зависит от выбора первых трех точек и от расчета гетеродинного контура. Если произвести сопряжение не в тех точках, которые были предусмотрены расчетом, то можно получить очень большие отклонения от сопряжения в промежуточных точках, следствием чего явятся большая неравномерность чувствительности по диапазону и снижение помехоустойчивости приемника.

У большинства современных промышленных приемников предусмотренные расчетом точки точного сопряжения отмечаются особыми метками непосредственно на шкале настройки.

Рис. 3в. Эквивалент антенны

При относительно узких диапазонах (с небольшим относительным изменением частоты) вполне удовлетворительное согласование и сопряжение настроек можно получить при уменьшенном колличестве подстроечных элементов и точек точного сопряжения. К этому часто прибегают на растянутых диапазонах КВ и в диапазоне УКВ, а в упрощенных приемниках даже на диапазонах СВ и ДВ. Качество сопряжения может быть также нарушено, если при подстройке колебательных контуров слегка изменить значение промежуточной частоты.

Расчетное значение ПЧ и допуск на ее отклонение от номинала указываются в технических описаниях радиовещательных приемников. Поэтому, раньше чем начинать подстройку колебательных контуров, следует внимательно ознакомиться со шкалой настройки приемника и его описанием, выяснить все частоты, на которых необходимо производить подстройку его контуров, и подготовить соответствующую измерительную аппаратуру.

Кроме генератора сигналов, при настройке колебательных контуров очень полезно иметь измеритель выхода (специальный вольтметр переменного тока, предназначаемый для измерения выходного напряжения УНЧ) и высокоомный вольтметр постоянного тока со шкалой на 5-10 В или универсальный ламповый вольтметр (постоянного и переменного тока).

Из числа специальных инструментов, необходимых при настройке колебательных контуров, упомянем изолированные отвертки и ключи, применяемые для вращения подстроечных сердечников различных типов. Эти инструменты легко изготовить самому из текстолитовых палочек. Металлические лезвия и головки должны иметь минимальные размеры и массу с тем, чтобы их влиянием на настраиваемые катушки индуктивности можно было пренебрегать.

Если в каскадах УПЧ и ВЧ настраиваемого приемника применены лампы с выводом управляющей сетки сверху балона, то для подключения к ним генератора сигналов удобно воспользоваться специальным колпачком, который надевается вместо имеющегося в приемнике. При этом от управляющей сетки отключается предшествующий колебательный контур, который может шунтировать выход генератора и осложнять настройку последующих колебательных контуров.

В.К. Лабутин. «Книга радиомастера». 1964 год

Вас может заинтересовать:

Комментарии к статьям на сайте временно отключены по причине огромного количества спама.

Источник

Как настроить колебательный контур в приемнике

Настройка контуров приемников АМ

Подготовка к настройке

Перед настройкой колебательных контуров надо убедиться в том, что роторы блока КПЕ не перекошены и не сбиты один относительно другого. При полностью введеном роторе воздушные зазоры между пластинами должны быть одинаковыми, а срез роторных пластин всех секций должен находиться в одной плоскости (это выверяется прикладыванием линейки). Такие дефекты встречаются не очень часто, но если их проглядеть и пытаться устранить расстройку подгонкой катушек и подстроечных конденсаторов под неисправный блок КПЕ, то можно окончательно расстроить приемник. При наличии механических дефектов у блока КПЕ надо или устранить их, или заменить блок новым.

Выравнивание емкости отдельных секций блока конденсаторов возможно с помощью измерителя емкости и специального приспособления, обеспечивающего поочередное подключение различных секций блока к измерителю жесткими, не меняющего своего положения проводниками. При выравнивании емкостей надо добиваться того, чтобы емкости всех секций различались не более чем на 1 пФ при любом угле поворота ротора.

Затем нужно проверить соединение стрелки шкалы с приводным механизмом, чтобы она при крайнем своем положении совпадала с крайней отметкой, нанесенной на шкале, либо при отсутствии такой отметки при обоих крайних положениях ротора конденсаторов отклонялась от концов шкалы симметрично. Регулятор громкости приемника надо установить приблизительно на 4/5 полной громкости, а регулятор тембра — в положение наибольшего пропускания высоких тонов, если этот регулятор не регулирует одновременно полосу пропускаемых частот усилителя промежуточной частоты.

Если приемник имеет устройство для регулирования ширины полосы пропускаемых частот, то оно должно быть установлено на самую узкую полосу. В приемниках, имеющим АРУ, последнее должно быть временно выключено. Для этого линию регулирующего напряжения нужно прервать и отрицательное напряжение на сетки регулируемых ламп подать помимо нее.

Разумеется, надо также убедиться в механической исправности настраиваемых контуров (отсутствие замыканий между пластинами статора и ротора КПЕ, целостности катушек и исправности переключателя диапазонов). Сам приемник должен быть расположен на столе так, чтобы доступ ко всем элементам подстройки и к сеточным цепям настраиваемых каскадов был достаточно свободен. Некоторые приемники для этой цели приходится вынимать из ящика.

Подключение сигнал-генератора и измерителя выхода

Подключение налаживаемого приемника к генератору производится всегда через конденсатор или эквивалент антенны, который воссоздает реальный режим работы входных контуров приемника. Кроме того, конденсатор или эквивалент антенны разделяют приемник и генератор по постоянному току и предотвращает короткие замыкания или утечку в цепях питания электродов ламп приемника.

Читайте также:  Навигатор из китая как настроить

Экранирующая оболочка кабеля от СГ должна быть соединена с корпусами или зажимами заземления как приемника, так и генератора. Перед каждой подстройкой генератор должен быть установлен на ту частоту, на которую данный контур приемника подстраивается. Подводимое к подстраиваемым контурам напряжение ВЧ всегда должно быть возможно меньше, чтобы, с одной стороны, не перегрузить лампы, а с другой, чтобы по измерителю выхода можно было следить за повышением чувствительности. Если чувствительность при подстройке возростает, то следует сразу же снижать подаваемое высокочастотное напряжение.

При модулируемом генераторе можно подстраивать приемник на слух, но подстройка получается более точной, если пользоваться измерителем выхода. Для его присоединения удобны имеющиеся в приемнике гнезда дополнительного громкоговорителя. Для увеличения отклонений стрелки измерителя выхода его можно присоединять к первичной обмотке выходного трансформатора, а не ко вторичной. Чтобы при этом не нагружать измеритель выхода постоянном анодным током выходной лампы, его надо включать через конденсатор емкостью 0,2-2 мкФ.

Можно также производить подстройку контуров при немодулированном сигнале. Тогда в качестве индикатора настройки применяют ламповый вольтметр постоянного тока, включенный параллельно нагрузочному сопротивлению диодного детектора. Можно также судить о настройке по оптическому индикатору настройки, имеющемуся в приемнике, но в этом случае настройка получается менее точной.

Подстройка контуров промежуточной частоты

При не очень сильной расстройке можно попытаться настроить все контуры ПЧ в один прием, для чего сигнал от генератора подается на управляющую сетку смесительной лампы. Колебания гетеродина на время настройки УПЧ должны быть сорваны. Для этого достаточно соединить управляющую сетку гетеродинной лампы через конденсатор емкостью 0,05-0,1 мкФ с землей.

Настройка колебательных контуров осуществляется последовательным вращением их органов подстройки до получения максимального выходного напряжения. После подстройки обоих контуров двухконтурного фильтра надо вновь вернуться к первому из настраивающихся контуров и уточнить его настройку. Путем ряда таких последовательных приближений можно добиться точной настройки в резонанс всех контуров, причем коэффициент усиления усилителя промежуточной частоты станет максимальным.

Для ускорения настройки контуров полосовых фильтров можно ослабить влияние второго контура на настраиваемый путем временного шунтирования второго контура сопротивлением 10-20 кОм ( рис.1 ). Последовательно с этим сопротивлением полезно включать конденсатор емкостью 0,01-0,02 мкФ, преграждающий путь постоянному току. Тогда второй конец шунтирующей цепочки можно во всех случаях соединять прямо с металлическим шасси приемника.

Рис. 1. Настройка полосового фильтра

1 — настраиваемый контур

Применение такой цепочки совершенно необходимо при настройке по максимуму, если в полосовом фильтре предусмотрена сильная связь, создающая двугорбую резонансную кривую.

При шунтировании одного контура резонансная кривая даже в этом случае превращается в одногорбую с одним максимумом, соответствующим резонансной частоте незашунтированного контура. Если контуры расстроены сильно или производится первичная настройка контуров вновь смонтированного приемника, то генератор сигнала следует сначала подключить к управляющей сетке последней лампы УПЧ и прежде всего настроить включенные в ее анодную цепь контуры.

Затем генератор пересоединяют к управляющей сетке предыдущей лампы и настраивают контуры, включенные в ее анодную цепь, и т.д. вплоть до контура, включенного в анодную цепь смесительной лампы.

Сразу же после настройки всех контуров ПЧ не изменяя частоты генератора, настраивают заграждающий контур ПЧ на входе приемника. Кабель от генератора присоединяют к антенному гнезду через эквивалент антенны и увеличивают напряжение генератора в той мере, в какой это необходимо для появления на выходе приемника сигнала. Настройка заграждающего контура производится по минимуму выходного напряжения приемника.

Поскольку избирательность по соседнему каналу, полоса пропускаемых частот и частотные искажения в ее пределах в основном зависят от результирующей кривой избирательности УПЧ, после настройки его контуров полезно снять и построить полученную кривую избирательности. Для этого надо иметь генератор сигналов, допускающий контролируемое изменение частоты в небольших пределах 20-30 кГц в районе промежуточной частоты приемника. При применении генератора типа ГСС-6 для этой цели пользуются шкалой на верньерной рукоятке, причем цену деления шкалы определяют путем деления изменения частоты по основной шкале при 1-2 полных оборота верньерной ручки на соответствующее число ее делений.

Если полученная кривая избирательности УПЧ имеет резко несимметричный вид, то это говорит или о неточной настройке отдельных контуров, или о наличии паразитной обратной связи (за счет емкости между анодными и сеточными цепями). Если полученная ширина полосы пропускания не удовлетворяет требованиям, то ее можно отрегулировать путем изменения степени связи между связанными контурами полововых фильтров.

В УПЧ, снабженных фильтрами с регулируемой полосой, после настройки контуров при самой слабой связи следует снять кривую избирательности для двух крайних установок регулятора полосы пропускания (техника снятия кривых избирательности изложена в разделе «Основные испытания приемников АМ«.

После того, как настройка контуров ПЧ зафиксирована, градуировка шкалы настройки приемника будет определяться только настройкой колебательного контура гетеродина. От правильности настройки гетеродинного контура будет также зависить качество сопряжения его со входными контурами, а значит, и эффективность предварительной избирательности, определяющей реальную чувствительность и другие важнейшие характеристики супергетеродинного приемника. Поэтому настройка гетеродинного контура требует особой тщательности. Прежде чем приступать к ней, надо внимательно изучить принципиальную схему гетеродина и выяснить:

  1. Расположение в монтаже всех органов подстройки гетеродинного контура на каждом поддиапазоне.
  2. Наличие подстроечных органов, влияющих на настройку на нескольких поддиапазонах.

Так, например, при схеме переключения диапазонов, изображенной на рис.2а , подстройка индуктивности катушки L1 скажется на обоих диапазонах и ее подстроечный сердечник надо рассматривать как орган настройки в диапазоне более коротких волн. Подстроечный же сердечник катушки L2 будет влиять на настройку только более длинноволнового диапазона (когда переключатель разомкнут).

Рис. 2а, б

Проанализировав действие органов подстройки гетеродина, можно наметить правильную очередность подстройки различных диапазонов АМ, которая позволит каждый диапазон настраивать только один раз. В современных многодиапазонных приемниках, как правило, применяют такую схему переключения диапазонов, которая обеспечивает независимую подстройку каждого из них ( рис.2б ). При этом очередность подстройки диапазонов не играет существенной роли.

Настройку гетеродинного контура обычно осуществляют косвенным методом — по приему частоты, соответствующей шкале настройки приемника, т.е. отличающейся от частоты гетеродина на величину промежуточной частоты. При этом на генераторе сигналов устанавливается частота, соответствующая той или иной метке на шкале приемника, выход генератора сигналов подключается к управляющей сетке смесительной лампы и подстройкой соответствующего органа гетеродинного контура добиваются максимального сигнала на выходе приемника.

При таком методе настройки надо всегда иметь твердую уверенность в том, что прием сигнала происходит не по зеркальному каналу. В радиовещательных приемниках обычно частота гетеродина при приеме по основному каналу выше принимаемой на величину промежуточной частоты. Таким образом, сравнивая отличающиеся на удвоенную промежуточную частоту две настройки генератора сигналов f1 и f2, при которых происходит прием, всегда можно определить и истинную частоту гетеродина

и то, какая из этих двух частот соответствует основному каналу, а какая — зеркальному. Во избежания ошибок из-за приема гармоник частоты генератора сигналов, надо принимать во внимание уровень выходного сигнала при различных настройках генератора (гармоники дают значительно меньший уровень выходного сигнала).

Подстройка гетеродина по методу одной точки

Подстройка гетеродина по методу одной точки встречается в растянутых диапазонах КВ. При этом ручку настройки устанавливают так, чтобы стрелка оказалась на метке шкалы настройки, соответствующей частоте точного сопряжения. На генераторе сигналов устанавливают эту частоту и производят подстройку гетеродинного контура подстроечным сердечником или конденсатором этого диапазона по максимальному выходному сигналу.

Для облегчения подстройки гетеродина раньше, чем производить подстройку при помощи соответствующего органа, можно определить отклонение настройки гетеродина, добиваясь приема сигнала вращением ручки настройки приемника. Если прием происходит при отклонении стрелки в сторону более высоких частот на шкале настройки, то это значит, что собственная частота гетеродина ниже требуемой и подстройка будет достигнута при уменьшении емкости подстроечного конденсатора или вывинчивания ферромагнитного сердечника из катушки гетеродина.

Если прием сигнала происходит при отклонении стрелки на шкале приемника в сторону более низких частот, то это значит, что собственная частота гетеродина выше требуемой и нужны обратные меры для подстройки. Если частота точного сопряжения неизвестна, то при сопряжении в одной точке выбирают частоту, соответствующую примерно середине шкалы.

Постройка гетеродина по методу двух точек

Постройка гетеродина по методу двух точек (при помощи параллельного подстроечного конденсатора и подстройки индуктивности) начинается с подгонки начальной емкости вблизи высшей частоты настраиваемого диапазона, а затем подстраивается индуктивностью вблизи низшей частоты диапазона ( рис.3 ).

Рис. 3. Схема подстройки контуров гетеродина
при сопряжении в двух точках
Рис. 4. Схема подстройки контуров гетеродина
при сопряжении в трех точках

После подстройки индуктивности вновь возвращаются к высшей частоте точного сопряжения и восстанавливают на этой частоте настройку подстроечным конденсатором и т.д. до тех пор, пока в обеих точках не будет достигнуто соответствие шкале. Если при двухэлементной подстройке точки точного сопряжения неизвестны, то их берут на частотах, отличающихся от высшей и низшей частоты данного диапазона на 10-15%.

Подстройка гетеродина по методу трех точек

Подстройка гетеродина по методу трех точек требует наличия в гетеродинном контуре трех подстроечных элементов: двух подстроечных конденсаторов (параллельного и последовательного) и подстроечного сердечника у контурной катушки. Емкость последовательного (сопрягающего) конденсатора обычно бывает достаточно большой, и в монтаже часто применяют конденсатор постоянной емкости. Тогда подгонка необходимой емкости осуществляется путем замены этого конденсатора или подбором небольшого дополнительного конденсатора, подключаемого параллельно. Первую подстройку в этом случае также производят вблизи высшей частоты диапазона при помощи параллельного подстроечного конденсатора. Затем переходят к подстройке гетеродина вблизи низшей частоты диапазона при помощи последовательного подстроечного конденсатора.

Третьей по порядку подгоняют настройку в средней точке диапазона путем подстройки индуктивности катушек гетеродинного контура. В какую сторону следует изменять емкости и индуктивности при том или ином отклонении от градуировки шкалы, поясняет рис.4 .

После однократной подстройки во всех трех точках снова возвращаются к первой точке (вблизи высшей частоты диапазона), и если она оказалась сбитой, то повторяют описанную операцию до тех пор, пока во всех трех точках не будет достигнуто устойчивое совпадение настроек с градуировкой шкалы. Если точные значения частот в трех точках сопряжения неизвестны, то в качестве средней точки сопряжения можно брать частоту 250 кГц в диапазоне ДВ и 1000 кГц в диапазоне СВ, а в качестве крайних — частоты, отличающиеся от высшей и низшей частоты данного диапазона на 5-7%.

Подстройка высокочастотных контуров

Подстройка высокочастотных контуров производится обычно в двух точках, совпадающих с крайними точками сопряжения гетеродина. Выход генератора сигналов присоединяют через эквивалент антенны к зажимам антенна-земля. Приемник настраивают по его шкале на низшую частоту точного сопряжения, а генератор сигнала подстраивают по максимальному сигналу на выходе приемника. Затем подстройкой сердечника катушки входного контура добиваются максимального повышения выходного сигнала приемника. Если высокочастотная часть приемника содержит более одного колебательного контура, то сначала можно попытаться настроить их одновременно.

После того как настройка в этой точке будет закончена, надо убедиться в точном совпадении частоты генератора с принимаемой частотой. Для этого надо запомнить положение ручки настройки генератора сигнала и, следя за выходным сигналом приемника, слегка изменить частоту генератора в одну и другую сторону. Если отклонение частоты генератора в любую сторону от первоначально установленной вызывает монотонное уменьшение выходного сигнала приемника, то это является признаком правильной настройки. Если же максимум выходного сигнала сместился в сторону от первоначально установленной частоты генератора, то подстройку входных контуров следует уточнить, подстроив генератор сигналов под новое положение максимума.

Если во входной цепи приемника имеются два настраивающихся контура, образующих полосовой фильтр, то надо каждый из контуров настраивать порознь, шунтируя другой контур сопротивлением 10-20 кОм, как это было описано для настройки фильтров ПЧ. Если в приемнике имеется усилитель высокой частоты (УВЧ) с колебательным контуром в анодной цепи, то при осложнениях в одновременной настройке всех ВЧ контуров следует сначала подстроить этот контур, подавая сигнал от генератора непосредственно на управляющую сетку лампы УВЧ.

После того как подстройка высокочастотных контуров на низшей частоте точного сопряжения произведена, приемник перестраивают по его шкале на высшую частоту точного сопряжения. Частоту генератора устанавливают опять по максимуму выходного сигнала приемника, а подстройку контуров осуществляют подстроечными конденсаторами, добиваясь наибольшего увеличения этого максимума. Затем вновь возвращаются к первой точке и уточняют подстройку сердечниками катушек и т.д., пока при очередном переходе к другой точке диапазона дополнительная подстройка ее окажется ненужной.

В заключение для проверки качества сопряжения надо выверить работу приемника на средней частоте диапазона. Для этого сравнивают величины входных сигналов, подаваемых от генератора, необходимые для получения одинакового выходного напряжения при настройке на среднюю частоту и на частотах, на которых производилась подстройка входных контуров. Они должны отличаться не более чем в 2-3 раза.

Особенности настройки в коротковолновых диапазонах

Во многих приемниках наблюдается определенное взаимное влияние настроек гетеродинного и входного контуров в диапазоне КВ. Поэтому первичное сопряжение гетеродинного контура со шкалой настройки следует считать предварительной операцией. Окончательная настройка гетеродинного и входного контура может потребовать одновременной дополнительной подстройки их уже при подаче сигнала от генератора на антенный вход приемника.

Вторая особенность состоит в том, что большинство современных приемников снабжается «растянутыми» коротковолновыми диапазонами, причем в схемы колебательных контуров вводятся дополнительные конденсаторы, уменьшающие коэффициент перекрытия диапазона ( рис.5 ). При подстройки таких контуров прежде всего надо убедиться в том, что не сбит коэффициент перекрытия гетеродинного контура.

Рис. 5. Схема контура с растянутой настройкой на диапазоне 2 (на диапазоне 1 обычная настройка)

Для этого надо взять отношение крайних частот, обозначенных на шкале приемника, и сравнить его с действительным отношением принимаемых приемником крайних частот. Если эти отношения совпадают, то достаточно производить настройку по методу одной или двух точек сопряжения предусмотренными органами подстройки. Если же коэффициент перекрытия сбит, то это свидетельствует об отклонении емкостей «растягивающих» конденсаторов (Ср1 и Ср2 на рис.5 ) от их расчетных значений.

Тогда подстройка гетеродина должна вестись по методу трех точек, причем может потребоваться замена растягивающих конденсаторов. Сбитый коэффициент перекрытия во входном контуре сказывается в резкой неравномерности чувствительности по диапазону после подстройки контура контура в одной точке (обычно здесь предусматривается лишь один орган подстройки).

В этом случае также надо уточнить коэффициент перекрытия входного контура соответствующей заменой растягивающих конденсаторов. Если входной контур настроен правильно, то в любой точке диапазона после настройки генератора сигналов по максимуму выходного сигнала приемника отклонение органа подстройки в любую сторону от установленного положения должно сопровождаться уменьшением сигнала на выходе приемника.

Надо здесь еще раз отметить особую опасность приема по зеркальному каналу именно в диапазоне коротких волн. Поэтому, настраивая приемник в диапазоне КВ, надо особенно внимательно следовать приведенным выше указаниям по этому вопросу.

Неисправности, обнаруживаемые при настройке контуров

При подстройке колебательных контуров можно встретиться с рядом специфических неисправностей.

    Контур обладает большим затуханием. Эта неисправность выражается в том, что резонанс получается очень тупым, каскад с таким контуром не дает заметного усиления и сильная перестройка контура мало изменяет показания измерителя выхода. Причиной этого служит ухудшение качества какой-либо из входящих в контур деталей (конденсатора, сердечника, катушки), и устранить ее удается иногда только последовательной заменой каждой из деталей неисправного контура.

Контур не подстраивается на заданную частоту предусмотренными для подстройки элементами. Например, при вращении сердечника в катушке контура промежуточной частоты не удается получить максимального показания измерителя выхода. Это говорит о слишком сильной расстройке контура. Причиной этого может быть механическое повреждение катушки или монтажа контура, а иногда — несоответствие емкости имеющегося в контуре конденсатора. Если грубых неисправностей незаметно, то для подстройки контура можно заменить конденсатор постоянной емкости. Также настраивают и сильно расстроенные гетеродинные контуры, подбирая в начале диапазона параллельную, а в конце — последовательную емкость.

Ложный максимум. Подстроечные конденсаторы обычно вращаются на 360 градусов, причем в определенных положениях их емкость достигает максимального и минимального значений. Если максимум выходного напряжения приемника совпадает с одним из этих положений подстроечного конденсатора, то, не обратив на это внимания, можно подумать, что резонанс достигнут. Аналогичный ложный максимум может появиться при прохождении подстроечным сердечником центра обмотки катушки.

Для предотвращения ошибок в настройке контуров, обусловленных ложными максимумами, после всякой подстройки надо путем осмотра органа подстройки убеждаться в том, что он не находится в положении минимума или максимума емкости (индуктивности). Если при подстройке обнаруживается только один максимум и он является ложным, то это означает, что пределов регулирования подстроечного элемента недостаточно для достижения резонанса, и данный контур надо признать не подстраивающимся на заданную частоту.

На отдельных участках диапазона пропадает прием станций. Полное прекращение приема на отдельных участках шкалы может быть следствием:

    замыкание пластин ротора и статора конденсатора переменной емкости, тогда на данном участке шкалы прекращается прием независимо от диапазона

  • срыва генерации гетеродина из-за низкой добротности его контура или падения крутизны характеристики гетеродинной лампы, тогда прекращение приема на различных диапазонах происходит в общем случае в разных точках шкалы. Неисправность второго рода наиболее часто случается в конце КВ диапазона. Она может быть вызвана также понижением рабочих напряжений на электродах лампы гетеродина (в том числе понижением напряжения накала, например, из-за падения напряжения в длинных и недостаточно толстых соединительных проводах цепи накала).
  • Наряду с другими средствами устранения «провалов» в гетеродине можно как исключение увеличить обратную связь (сблизить катушку обратной связи с контурной катушкой или увеличить число витков в первой катушке).

    В.К. Лабутин. «Книга радиомастера». 1964 год

    Источник

    Шаг за шагом

    Настройка контура

    Для плавной настройки приемника обычно используется конденсатор переменной емкости (лист 92). Такой конденсатор состоит из двух частей: неподвижной — статора и подвижной — ротора. Статор и ротор собраны из тонких пластин, причем ротор соединен с металлическим корпусом конденсатора, а статор изолирован от него. Большое число пластин необходимо для того, чтобы получить сравнительно большую емкость при небольших габаритах конденсатора. При монтаже ротор, как правило, соединяют с нижним (по схеме) концом катушки, то есть фактически заземляют. При повороте ротора изменяется расстояние между его пластинами и пластинами статора, а вместе с этим изменяется и емкость конденсатора. Основной характеристикой таких конденсаторов является максимальная емкость Смакс (пластины полностью введены) и минимальная емкость Смин (пластины полностью выведены). На схемах указываются обе эти величины (через тире).

    Широкое распространение получили стандартные блоки, состоящие из двух конденсаторов переменной емкости (двух секций), каждый из которых имеет максимальную емкость Смакс = 450 (520) пф и минимальную Смин= 15 (25) пф. Роторы обеих секций соединены между собой, так как они закреплены на общей металлической оси. На схеме конденсаторы, роторы которых закреплены на одной оси, соединяют пунктирной линией. В случае необходимости, например в детекторном приемнике, можно использовать только одну секцию блока, не подключая никуда статор второй секции.

    С помощью одного конденсатора стандартного блока можно плавно изменять частоту настройки контура в три-четыре раза и таким образом полностью перекрыть один из радиовещательных диапазонов. При этом максимальной емкости будет соответствовать самая низкая частота диапазона, а минимальной емкости — самая высокая частота. Это следует из рассмотренной нами основной формулы для f: с увеличением емкости конденсатора резонансная частота контура уменьшается.

    Для перехода с одного диапазона на другой в контуре осуществляется переключение катушек. Так, например, для перехода с длинных волн на средние индуктивность катушки Lк уменьшают примерно в десять раз, а при переходе на короткие волны — еще в десять-двадцать раз. Конденсатор настройки на всех диапазонах используется один и тот же, а катушки к нему подключаются с помощью переключателя (переключатель диапазонов, рис. 56).

    Для того чтобы при налаживании приемника можно было точно подогнать границы диапазона, в контур вводят элементы подстройки. Один из этих элементов — это подключенный непосредственно к катушке, а следовательно, определяющий общую емкость контура, подстроечный конденсатор Сп (лист 93), емкость которого можно изменять от 5-10 до 25-30 пф. Этот конденсатор (его иногда называют «триммер») особенно сильно влияет на настройку контура на самых высоких частотах, когда ротор конденсатора настройки выведен. Это объясняется тем, что подстроечный конденсатор фактически подключен параллельно конденсатору настройки Ск, и общая емкость контура определяется их суммой.

    Когда емкость конденсатора настройки Ск мала, то даже небольшие изменения емкости Сп оказываются весьма ощутимыми. Если же полностью ввести ротор конденсатора Ск, то на фоне его большой емкости влияние Сп будет незначительным. Сказанное хорошо иллюстрируется простым примером. Допустим, что емкость Ск изменяется от 20 пф до 500 пф, а емкость Сп можно менять в пределах 5-30 пф. При выведенном роторе конденсатора настройки (Ск=20 пф) общую емкость контура можно менять с помощью Сп от 25 пф (20+5) до 50 пф (20+30), то есть в два раза. Когда же мы введем ротор (Ск=500 пф), то общую емкость контура можно будет менять лишь на 5% — от 505 пф (500+5) до 530 пф (500+30). Поэтому мы и говорим, что в основном Сп влияет на резонансную частоту контура на самых высоких частотах диапазона, то есть при минимальной емкости конденсатора Ск (рис. 57, 58).

    После налаживания приемника, когда емкость подстроечного конденсатора Сп окончательно подобрана, к нему больше не прикасаются.

    Чаще всего встречаются следующие типы подстроечных конденсаторов: воздушный, очень напоминающий обычный конденсатор настройки с небольшим числом миниатюрных статорных и роторных пластин; трубчатый, в котором обе обкладки имеют форму цилиндров (наподобие конденсатора КТК), один из которых перемещается с помощью винта; дисковый керамический, состоящий из двух керамических частей — основания и поворачивающегося диска, на который нанесен слой серебра — одна из обкладок конденсатора. Вторая обкладка закреплена на керамическом основании. При вращении керамического диска меняется взаимное расположение обкладок, а следовательно, и емкость конденсатора. Во всех случаях подстроечный конденсатор обозначается на схеме как обычный постоянный, с той лишь разницей, что нижняя черточка рисуется в виде дуги со стрелкой.

    Очень удобно производить подстройку контура, если в катушке имеется ферромагнитный сердечник. Вдвигая такой сердечник в катушку, мы увеличиваем ее индуктивность и уменьшаем резонансную частоту контура. Если катушка выполнена из двух отдельных секций, то ее индуктивность можно изменять, сближая либо раздвигая секции: чем ближе одна секция к другой, тем сильнее взаимодействуют их магнитные поля, как бы усиливая друг друга, тем, следовательно, больше общая индуктивность катушки (лист 96). Сказанное справедливо лишь тогда, когда секции намотаны в одну и ту же сторону и начало одной из них соединено с концом другой. Если не выполняется одно из этих условий, то магнитные поля отдельных секций ослабляют друг друга, и при сближении секций общая индуктивность уменьшается.

    Если в контуре имеется и подстроечный конденсатор и катушка с сердечником, то подстройку контура путем изменения индуктивности катушки целесообразно производить при максимальной емкости конденсатора настройки Ск, то есть тогда, когда подстроечный конденсатор Сп на резонансную частоту почти не влияет.

    Используя одну секцию стандартного блока конденсаторов, две катушки и переключатель для включения этих катушек в контур (переключатель диапазонов), можно собрать детекторный приемник с плавной настройкой на ДВ и СВ диапазонах. Благодаря резонансным свойствам контура такой приемник будет обладать некоторой избирательностью и будет работать громче, чем простейший детекторный приемник, описанный ранее.

    Источник